AE 14: Integration

Suggested answers

Application exercise
Answers

In this exercise, we will:

Common functions + their Integrals

  1. Power Function:
  • Function:

\[ f(x)=x^n \]

  • Integral:

\[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1) \]

  1. Exponential Function:
  • Function:

\[ f(x)=e^x \]

  • Integral:

\[ \int e^x \, dx = e^x + C \]

  • Function:

\[ f(x)=a^x \]

  • Integral:

\[ \int a^x \, dx = \frac{a^x}{\ln(a)} + C \]

  1. Natural Logarithm
  • Function:

\[ f(x) = ln(x) \]

  • Integral:

\[ \int \ln(x) \, dx = x \ln(x) - x + C \]

  1. Trigonometric Functions
  • Function:

\[ f(x)=\sin(x) \]

  • Integral:

\[ \int \sin(x) \, dx = -\cos(x) + C \]

  • Function:

\[ f(x)=\cos(x) \]

  • Integral:

\[ \int \cos(x) \, dx = \sin(x) + C \]

  • Function:

\[ f(x)=\tan(x) \]

  • Integral:

\[ \int \tan(x) \, dx = -\ln|\cos(x)| + C = \ln|\sec(x)| + C \]

  1. Hyperbolic Functions
  • Function:

\[ f(x)=\sinh(x) \]

  • Integral:

\[ \int \sinh(x) \, dx = \cosh(x) + C \]

  • Function:

\[ f(x)=\cosh(x) \]

  • Integral:

\[ \int \cosh(x) \, dx = \sinh(x) + C \]

Integrals

For each problem, find the integral of the given function. Show all steps clearly.

Exercise 1

Function:

\[ f(x) = 5x^3 \]

Solution:

  • The power rule for integration states that \(\int x^n \space dx = \frac{x^{n+1}}{n+1}+C\)

  • Applying the power rule:

\[ \int 5x^3 \, dx = 5 \cdot \frac{x^{3+1}}{3+1} + C = \frac{5x^4}{4} + C \]

Exercise 2

Function:

\[ g(x) = \sqrt{x} \]

Solution:

  • Rewrite the function with a fractional exponent: \(\sqrt{x}=x^{1/2}\).

  • Apply the power rule:

\[ g(x)=x^{1/2} \]

\[ \int x^{1/2} \, dx = \int x^{1/2} \, dx = \frac{x^{1/2+1}}{1/2+1} + C = \frac{x^{3/2}}{3/2} + C = \frac{2}{3} x^{3/2} + C \]

Exercise 3

Function:

\[ h(x)=\ln(x) \]

Solution:

  • Use the integral of the natural logarithm function:

\[ \int \ln(x) \, dx = x \ln(x) - x + C \]

Intermediate Derivatives Using Chain Rule and Product Rule

Exercise 4

Function:

\[ \int xe^x \space dx \]

Solution

  • Identify the parts: Let \(u=x\) and \(dv=e^x \space dx\)

  • Differentiate and integrate:

    • Differentiate: \(du = dx\)

    • Integrate: \(v = e^x\)

  • Apply the integration by parts formula: \(\int u \space dv = uv - \int v \space du\)

\[ \int x e^x \, dx = x e^x - \int e^x \, dx \]

  • Simplify the integral:

\[ \int x e^x \, dx = x e^x - e^x + C \]

  • Final answer:

\[ \int x e^x \, dx = e^x (x - 1) + C \]

Exercise 5

Function:

\[ \int x \ln(x) \space dx \]

Solution:

  • Identify the parts: \(u=\ln(x)\) and \(dv=x \space dx\)

  • Differentiate and integrate:

    • Differentiate: \(du=\frac{1}{x}\space dx\)

    • Integrate: \(v=\frac{x^{2}}{2}\)

  • Apply the integration by parts formula: \(\int u \space dv = uv - \int v \space du\)

  • Substitute the parts:

\[ \int x \space \ln(x) \space dx = \ln(x) \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cdot \frac{1}{x} \space dx \]

  • Simplify the integral:

\[ \int x \ln(x) \space dx = \frac{x^{2} \ln(x)}{2} - \frac{1}{2} \int x \space dx \]

  • Integrate the remaining part:

\[ \frac{1}{2} \int x \space dx = \frac{1}{2} \cdot \frac{x^2}{2} = \frac{x^2}{4} \]

  • Combine the results:

\[ \int x \ln(x) \space dx = \frac{x^2 \ln(x)}{2} - \frac{x^2}{4} + C \]

  • Final answer:

\[ \int x \ln(x) \space dx = \frac{x^2}{2} \ln(x) - \frac{x^2}{4} + C \]

Advanced Integral

Exercise 6

Function:

\[ \int x \sin (x^2) \space dx \]

Solution:

  • Identify the substitution: Let \(u = x^2\)

  • Differentiate and solve for \(du\):

    • \(du = 2x \space dx\)

    • \(\frac{1}{2}du = x \space dx\)

  • Substitute into the integral

\[ \int x sin(x^2) \space dx = \int \sin(u) \cdot \frac{1}{2} \space du \]

  • Integrate:

\[ \frac{1}{2} \int \sin(u) \space du = \frac{1}{2}(-\cos(u)) + C \]

  • Substitute back into the original variable:

\[ \frac{1}{2}(-\cos(u)) + C = -\frac{1}{2}\cos(x^2) + C \]

  • Final answer

\[ \int x sin(x^2) \space dx = -\frac{1}{2}\cos(x^2) + C \]