AE 13: Derivation

Suggested answers

Application exercise
Answers

In this exercise, we will:

Common functions + their Derivatives

  1. Power Function:
  • Function:

\[ f(x)=x^n \]

  • Derivative:

\[ f'(x) = \frac{d}{dx} (x^n) = nx^{n-1} \]

  1. Exponential Function:
  • Function:

\[ f(x)=e^x \]

  • Derivative:

\[ f'(x) = \frac{d}{dx} (e^x) = e^x \]

  • Function:

\[ f(x)=a^x \]

  • Derivative:

\[ f'(x) = \frac{d}{dx} (a^x) = a^x \ln(a) \]

  1. Natural Logarithm
  • Function:

\[ f(x) = ln(x) \]

  • Derivative:

\[ f'(x) = \frac{d}{dx} (\ln(x)) = \frac{1}{x} \]

  1. Trigonometric Functions
  • Function:

\[ f(x)=\sin(x) \]

  • Derivative:

\[ f'(x) = \frac{d}{dx} (\sin(x)) = \cos(x) \]

  • Function:

\[ f(x)=\cos(x) \]

  • Derivative:

\[ f'(x) = \frac{d}{dx} (\cos(x)) = -\sin(x) \]

  • Function:

\[ f(x)=\tan(x) \]

  • Derivative:

\[ f'(x) = \frac{d}{dx} (\tan(x)) = \sec^2(x) \]

  1. Hyperbolic Functions
  • Function:

\[ f(x)=\sinh(x) \]

  • Derivative:

\[ f'(x) = \frac{d}{dx} (\sinh(x)) = \cosh(x) \]

  • Function:

\[ f(x)=\cosh(x) \]

  • Derivative:

\[ f'(x) = \frac{d}{dx} (\cosh(x)) = \sinh(x) \]

Derivatives

For each problem, find the derivative of the given function. Show all steps clearly.

Exercise 1

Function:

\[ f(x) = 5x^3 \]

Solution:

  • The power rule states that \(\frac{d}{dx}(x^n)=nx^{n-1}\)

  • Applying the power rule:

\[ f'(x) = \frac{d}{dx}(5x^3) = 15x^2 \]

Exercise 2

Function:

\[ g(x) = \sqrt{x} \]

Solution:

  • Rewrite the function with a fractional exponent: \(\sqrt{x}=x^{1/2}\).

  • Apply the power rule:

\[ g(x)=x^{1/2} \]

\[ g'(x) = \frac{1}{2}x^{1/2-1} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}} \]

Exercise 3

Function:

\[ h(x)=\ln(x) \]

Solution:

  • The derivative of the natural logarithm function is \(\frac{1}{x}\)

\[ h'(x) = \frac{d}{dx}(\ln(x)) = \frac{1}{x} \]

Intermediate Derivatives Using Chain Rule and Product Rule

Exercise 4

Function:

\[ f(x)=(2x^3+3x)^4 \]

Solution

  • Identify the outer function and inner function:

    • Outer function: \(u^4\)

    • Inner function: \(u=2x^3+3x\)

  • Apply the chain rule:

\[ \frac{d}{dx}(u^4)=4u^3 \cdot \frac{d}{dx}(u) \]

  • Differentiate the inner function:

\[ \frac{d}{dx}(2x^3+3x)=6x^2+3 \]

  • Combine the results:

\[ 4(2x^3 + 3x)^3 \cdot (6x^2 + 3) \]

Exercise 5

Function:

\[ \frac{d}{dx}(x^2 e^x) \]

Solution:

  • Identify the product of two functions: \(u=x^2\) and \(v=e^x\)

  • Apply the product rule: \((u \cdot v)^{'}=u^{'} \cdot v + u \cdot v^{'}\)

  • Differentiate each function:

\[ u^{'}=\frac{d}{dx}(x^2)=2x \]

\[ v^{'}=\frac{d}{dx}(e^x)=e^x \]

  • Combine the results:

\[ g^{'}=x^2 \cdot e^x + e^x \cdot 2x = e^x(x^2+2x) \]

Exercise 6

Function:

\[ h(x)=\sin (x^2) \]

Solution:

  • Identify the outer function and inner function:

    • Outer function: \(\sin (u)\)

    • Inner function: \(u = x^2\)

  • Apply the chain rule: \(\frac{d}{dx}(\sin (u))=\cos (u) \cdot \frac{d}{dx}(u)\)

  • Differentiate the inner function:

\[ \frac{d}{dx}(x^2)=2x \]

  • Combine the results:

\[ h^{'}(x)=2x\cos (x^2) \]

Advanced Derivatives

Exercise 7

Function:

\[ f(x)=(\ln (x) \cdot e^{2x})^3 \]

Solution

  • Identify the outer function and inner function

    • Outer function: \(u^3\)

    • Inner function: \(u=\ln (x) \cdot e^{2x}\)

  • Apply the chain rule: \(\frac{d}{dx}(u^3)=3u^2 \cdot \frac{d}{dx}(u)\)

  • Use the product rule to differentiate the inner function:

\[ u=\ln (x), v=e^{2x} \]

  • Differentiate each function:

\[ u^{'}=\frac{d}{dx}(\ln (x)) = \frac{1}{x} \]

\[ v^{'}=\frac{d}{dx}(e^{2x}) = 2e^{2x} \]

  • Apply the product rule:

\[ \frac{d}{dx}(\ln(x) \cdot e^{2x}) = \left( \frac{1}{x} \cdot e^{2x} \right) + \left( \ln(x) \cdot 2e^{2x} \right) \]

\[ = e^{2x} \left( \frac{1}{x} + 2 \ln(x) \right) \]

  • Combine the outer function derivative:

\[ f'(x) = 3 \left( \ln(x) \cdot e^{2x} \right)^2 \cdot e^{2x} \left( \frac{1}{x} + 2 \ln(x) \right) \]

  • Simplify:

\[ f'(x) = 3e^{4x} (\ln(x))^2 \left( \frac{1}{x} + 2 \ln(x) \right) \]