Visualizing various types of data

Lecture 5

Dr. Greg Chism

University of Arizona
INFO 511 - Spring 2025

Setup

# Import necessary libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from palmerpenguins import load_penguins

# Load the penguins dataset
penguins = load_penguins()

# Set theme
sns.set_theme(style="whitegrid")

Data Visualization

Examining data visualization

Discuss the following for the visualization in the #lecture-discussions Slack Channel.

Source: Twitter

Violin plots

Code
plt.figure(figsize=(8, 6))
sns.violinplot(x="species", y="body_mass_g", data=penguins)
plt.title('Violin Plot of Body Mass by Species')
plt.show()

Multiple geoms

Code
plt.figure(figsize=(8, 6))
sns.violinplot(x="species", y="body_mass_g", data=penguins)
sns.stripplot(x="species", y="body_mass_g", data=penguins, jitter=False, color='black')
plt.title('Violin Plot with Points of Body Mass by Species')
plt.show()

Multiple geoms

Code
plt.figure(figsize=(8, 6))
sns.violinplot(x="species", y="body_mass_g", data=penguins)
sns.stripplot(x="species", y="body_mass_g", data=penguins, jitter=True, color='black')
plt.title('Violin Plot with Points of Body Mass by Species')
plt.show()

Multiple geoms + aesthetics

Code
plt.figure(figsize=(8, 6))
sns.violinplot(x="species", y="body_mass_g", data=penguins)
sns.stripplot(x="species", y="body_mass_g", data=penguins, jitter=True, hue='species')
plt.title('Violin Plot with Jittered Points and Color by Species')
plt.legend(title='Species')
plt.show()

Multiple geoms + aesthetics

Code
plt.figure(figsize=(8, 6))
sns.violinplot(x="species", y="body_mass_g", data=penguins)
sns.stripplot(x="species", y="body_mass_g", data=penguins, jitter=True, hue='species')
plt.title('Violin Plot with Jittered Points, Color by Species, and No Legend')
plt.legend(title='Species').remove()
plt.show()

Multiple geoms + aesthetics

Code
plt.figure(figsize=(8, 6))
sns.violinplot(x="species", y="body_mass_g", data=penguins, palette='colorblind')
sns.stripplot(x="species", y="body_mass_g", data=penguins, jitter=True, hue='species', palette='colorblind')
plt.title('Violin Plot with Jittered Points, Color by Species, No Legend, and Colorblind Palette')
plt.legend(title='Species').remove()
plt.show()

Visualizing various types of data

The way data is displayed matters

What do these three plots show?

Visualizing penguins

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from palmerpenguins import load_penguins

penguins = load_penguins()

penguins.head()
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year
0 Adelie Torgersen 39.1 18.7 181.0 3750.0 male 2007
1 Adelie Torgersen 39.5 17.4 186.0 3800.0 female 2007
2 Adelie Torgersen 40.3 18.0 195.0 3250.0 female 2007
3 Adelie Torgersen NaN NaN NaN NaN NaN 2007
4 Adelie Torgersen 36.7 19.3 193.0 3450.0 female 2007

Univariate analysis

Univariate analysis

Analyzing a single variable:

  • Numerical: histogram, box plot, density plot, etc.

  • Categorical: bar plot, pie chart, etc.

Histogram

Code
plt.figure(figsize=(8, 6))
sns.histplot(penguins['body_mass_g'], bins=30)
plt.title('Histogram of Penguin Body Mass')
plt.xlabel('Body Mass (g)')
plt.ylabel('Count')
plt.show()

Boxplot

Code
plt.figure(figsize=(8, 6))
sns.boxplot(y=penguins['body_mass_g'])
plt.title('Boxplot of Penguin Body Mass')
plt.ylabel('Body Mass (g)')
plt.show()

Density plot

Code
plt.figure(figsize=(10, 6))
sns.kdeplot(penguins['body_mass_g'], fill=True)
plt.title('Density Plot of Penguin Body Mass')
plt.xlabel('Body Mass (g)')
plt.ylabel('Density')
plt.show()

Bivariate analysis

Bivariate analysis

Analyzing the relationship between two variables:

  • Numerical + numerical: scatterplot

  • Numerical + categorical: side-by-side box plots, violin plots, etc.

  • Categorical + categorical: stacked bar plots

  • Using an aesthetic (e.g., fill, color, shape, etc.) or facets to represent the second variable in any plot

Side-by-side box plots

Code
plt.figure(figsize=(8, 6))
sns.boxplot(x="species", y="body_mass_g", data=penguins)
plt.title('Side-by-side Box Plots of Body Mass by Species')
plt.xlabel('Species')
plt.ylabel('Body Mass (g)')
plt.show()

Density plots

Code
plt.figure(figsize=(8, 6))
sns.kdeplot(data=penguins, x="body_mass_g", hue="species", fill=True)
plt.title('Density Plot of Body Mass by Species')
plt.xlabel('Body Mass (g)')
plt.ylabel('Density')
plt.show()

Multivariate analysis

Bechdel Test

The Bechdel test also known as the Bechdel-Wallace test, is a measure of the representation of women in film and other fiction. The test asks whether a work features at least two female characters who have a conversation about something other than a man. Some versions of the test also require that those two female characters have names.

Load Bechdel test data

Load the Bechdel test data with pd.read_csv()

bechdel = pd.read_csv("data/bechdel.csv")

list() the .columns names of the bechdel data:

list(bechdel.columns)
['title', 'year', 'gross_2013', 'budget_2013', 'roi', 'binary', 'clean_test']

ROI by test result

What about this plot makes it difficult to evaluate how ROI varies by Bechdel test result?

Code
plt.figure(figsize=(8, 4))
sns.stripplot(x='roi', y='clean_test', hue='binary', data=bechdel)
plt.title('ROI by Bechdel Test Result')
plt.xlabel('ROI')
plt.ylabel('Bechdel Test Result')
plt.legend(title='Binary')
plt.show()

Movies with high ROI

What are the movies with highest ROI?

high_roi_movies = bechdel[bechdel['roi'] > 400][['title', 'roi', 'budget_2013', 'gross_2013', 'year', 'clean_test']]
print(high_roi_movies)
                        title         roi  budget_2013   gross_2013  year  \
703       Paranormal Activity  671.336857       505595  339424558.0  2007   
1319  The Blair Witch Project  648.065333       839077  543776715.0  1999   
1575              El Mariachi  583.285665        11622    6778946.0  1992   

     clean_test  
703     dubious  
1319         ok  
1575    nowomen  

ROI by test result

Zoom in: What about this plot makes it difficult to evaluate how ROI varies by Bechdel test result?

Code
plt.figure(figsize=(8, 4))
sns.boxplot(x='roi', y='clean_test', hue='binary', data=bechdel)
plt.xlim(0, 15)
plt.title('Zoomed in ROI by Bechdel Test Result')
plt.xlabel('ROI')
plt.ylabel('Bechdel Test Result')
plt.legend(title='Binary')
plt.show()

Sneak preview…



to next week’s data wrangling pipelines…

Median ROI

median_roi = bechdel['roi'].median()
print(f"Median ROI: {median_roi}")
Median ROI: 3.9051317558839456

Median ROI by test result

median_roi_by_test = bechdel.groupby('clean_test')['roi'].median().reset_index()
print(median_roi_by_test)
  clean_test       roi
0    dubious  3.795816
1        men  3.964457
2     notalk  3.688260
3    nowomen  3.265901
4         ok  4.211049

ROI by test result with median line

What does this plot say about return-on-investment on movies that pass the Bechdel test?

Code
plt.figure(figsize=(8, 4))
sns.boxplot(x='roi', y='clean_test', hue='binary', data=bechdel)
plt.axvline(x=4.21, color='red', linestyle='--')
plt.xlim(0, 15)
plt.title('ROI by Bechdel Test Result with Median Line')
plt.xlabel('ROI')
plt.ylabel('Bechdel Test Result')
plt.legend(title='Binary')
plt.show()